Bipolar Radiofrequency Lesion Geometry: Implications for Palisade Treatment of Sacroiliac Joint Pain

Eric R. Cosman, Jr., PhD*; Christian D. Gonzalez, MD, FIPP§

*Cosman Medical, Inc., Burlington, Massachusetts; §Department of Anesthesiology, University of Massachusetts, Worcester, Massachusetts, U.S.A.

Abstract: Ex vivo photographic temperature mapping of bipolar radiofrequency (RF) lesions in animal tissue is performed over a wide range of electrode tip spacings, tip lengths, tip diameters, tip temperatures, and lesion times. In vivo temperature measurements collected during clinical treatment of sacroiliac joint (SIJ) pain corroborate those collected ex vivo. Generation of a “strip lesion” connecting two separated bipolar electrode tips is demonstrated ex vivo for tip spacings as large as 20 mm. A rounded rectangular bipolar lesion with midline dimensions 12 mm x 15 mm x 8 mm is demonstrated using 10 mm parallel tip spacing, 10 mm tip lengths, 20 gauge cannulae, 90°C tip temperature, and 3-minute lesion time. Lesion length can be increased to 18 mm by using 15 mm tip lengths. Lesion width can be increased to 17 mm by using 12 mm tip spacing. The size of conventional bipolar lesions can exceed the size of lesions produced both by conventional monopolar RF (12 mm x 7 mm x 7 mm ellipsoidal) and by cooled monopolar RF as used in spinal pain management (10 mm x 10 mm x 10 mm spherical). SIJ pain is treated by placing 5 to 7 straight RF cannulae perpendicular to the dorsal sacrum and producing 4 to 6 overlapping bipolar RF lesions between the dorsal sacral foramina and the ipsilateral SIJ. This bipolar “palisade” (a defensive fence) creates a continuous lesion spanning the region through which multiple sacral lateral branch nerves travel along irregular, branching paths to reach the SIJ.

Key Words: bipolar radiofrequency lesion size, bipolar RF electrode spacing, sacroiliac joint pain treatment, back pain management

INTRODUCTION

The sacroiliac joint (SIJ) is reportedly involved in 15 to 25% of cases of axial lower back pain.1 Referred pain due to SIJ dysfunction commonly radiates into the buttocks, lumbar region, and lower extremity. Conservative treatment of SIJ pain primarily involves medical management, with little benefit from physical therapy. Steroidal injections into the SIJ have been performed for decades, though evidence of their long-term benefit is mixed. More recently, radiofrequency (RF) lesioning of the joint’s dorsal innervations has been proposed as a means to extend the duration pain relief and to avoid the cumulative side effects of corticosteroids. RF treatment can be clinically effective, but is complicated by...
Figure 1. (A) For parallel-electrode configurations, bipolar RF lesion geometry depends on the parameters: electrode tip spacing \(s \), tip length \(l \), tip diameter/gauge \(d \), maximum tip temperature \(T \), and lesion time \(t \). (B) The electric and current density fields are focused between closely-spaced bipolar electrodes, preferentially heating the inter-tip region. (C) Bipolar lesion size and inter-tip connectivity can be characterized by the lesion’s midline length \(L \), width \(W \), and midline depth \(D \). (D) The “inter-tip” region is the area between the uninsulated tips of two electrodes. (A–D) Each panel shows a bipolar thermal lesion in lateral (top) and needle (bottom) views. As tip spacing \(s \) increases, the lesion expands in width \(W \) and narrows in both length \(L \) and depth \(D \) at the midline. The range of spacing values \(s \) over which this transition occurs depends on the other configuration parameters \(l, d, T, \) and \(t \).
dorsal sacral foramina and the sacroiliac joint line (Figure 2). By analogy to a defensive fence, this bipolar “palisade” is intended to create a continuous heat lesion that spans the entire region through which the sacral lateral branch nerves travel to the SIJ.

METHODS

Ex Vivo Data Collection

The experimental setup for ex vivo data collection in bovine liver is shown in Figure 3. Two straight, sharp RF cannulae (CC10xx, Cosman Medical, Burlington, MA, U.S.A.) and a 29-gauge (0.33 mm diameter) cordotomy electrode (Cosman LCE) are anchored together to constrain the spacing between the uninsulated cannula tips and the position of the cordotomy electrode. These anchored elements are placed on top of a lower slab of adult bovine liver whose top surface is cut flat. A second cordotomy electrode is inserted through the top surface of the lower liver slab to fix its position relative to the other elements. An RF electrode (Cosman CSK-TC10) is placed within each cannula to electrify its uninsulated tip and to monitor its temperature. The RF electrodes are attached to outputs 1 and 2 of a four-output radiofrequency generator (Cosman G4). The cordotomy electrodes’ thermocouple wires are connected to outputs 3 and 4 of the RF generator, but their RF wires are left disconnected so that they serve only as electrically-passive, fine-gauge, remote temperature probes. As shown in Figures 4A and 4B, these probes are placed at the center of the inter-tip region and at the center of the distal-edge of the inter-tip region because these midline temperatures are indicative of lesion geometry. A second slab of adult bovine liver is placed on top of the first slab, and the two slabs are pressed together firmly so that the cannulae/electrodes and remote temperature probes are surrounded by tissue. The RF generator produces a bipolar lesion by driving RF current between the tips of the RF cannulae, automatically adjusting the output level so that neither electrode’s tip exceeds a target temperature, and so that at least one electrode’s tip is held within ±2°C of that target temperature for a specified lesion time. The target temperature is achieved within approximately 15 seconds. The G4 generator stores measurements once per second, including electrode tip temperatures, remote probe temperatures, inter-electrode impedance, RMS voltage, RMS current, and average power output. After the lesion is complete, the top liver slab is removed and a photograph (Canon EOS 20D, Canon EF 100 mm f/2.8 Macro Lens) is taken perpendicular to the bottom slab to document the cross-sectional length and width of the lesion. In some configurations, the lesion in the lower slab is cut in half, perpendicular to electrode direction, and half of the lesion’s depth dimension is measured.

Bipolar lesions are created by varying the configuration parameters shown in Figure 1A: inter-tip spacing s, cannulae diameter d, tip lengths l, tip temperature T, and lesion time t. Inter-tip angle (Figure 5A) and inter-tip offset (Figure 5D) are also varied. Spacing is measured between the central axes of the cannulae to ±1 mm accuracy before heating, because tissue can contract in the heating process. Sampling of this large parameter space is centered on the base configuration 10 mm parallel spacing, 20 gauge diameter, 10 mm tip length, 90°C set temperature, and 3-minute lesion time. As each parameter is varied, the base configuration is repeated in multiple samples of bovine liver to establish variability in lesion size estimates.

The same setup is used with samples of bovine muscle, chicken muscle, and porcine muscle to demonstrate consistency or variability of lesion geometry across animal
tissues. A similar setup is also used in which cannula are suspended in chicken egg white, to allow for direct comparison with a previous study of bipolar lesion geometry. Adult bovine liver is selected as the primary media for this investigation because preliminary temperature measurements indicated that its color begins changing between about 45°C to 50°C (see Figure 4). In contrast, egg white and the muscles were observed to change color at higher temperatures, reducing the visible extent of thermal heating patterns. The use of solid tissue also eliminates questions about inhomogeneities and fluid convection that are known to exist in egg white.

Before a lesion is created, the tissue or egg white is covered with a plastic sheet to preserve moisture, and is allowed to equilibrate at room temperature (mode: 25°C, min: 18°C, max: 29°C). This is expected to produce conservative assessments of lesions size relative to those that might be produced when starting at body temperature 37°C. A small set of preliminary experiments were conducted in which the bovine liver and egg white media were pre-heated in a calibrated oven (Lindberg/Blue M, model M01450SA-1) set to 37°C, and no pronounced difference in lesion geometry was observed.
Figure 5. (A–D) Cross-sectional photographs of bipolar lesions in ex vivo adult bovine liver for variations in inter-tip angle, tip temperature, lesion time, and parallel inter-tip offset, starting from the base configuration 10 mm parallel spacing, 20 gauge diameter, 10 mm tip length, 90°C tip temperature, 3-minute lesion time. (E) Measurements of midline lesion length \(L \) and width \(W \) are based on the dimension of the moderately-cooked region (yellow color zone) measured in the photographs of panels A through D, among others. (F) Intra-tip and inter-tip temperature time-series collected during generation of the 3-, 5-, and 10-minute lesions shown in panel C. The higher variability in distal-edge midline temperature measurements is likely due to higher temperature gradients at that location. (G) The upper and lower half of each image compares different lesion times for a bipolar configuration with 15 mm tip lengths, 20 gauge diameter, and 90°C tip temperature. Inter-tip lesion size continues to increase substantially after 3 minutes for the 20 mm spacing (bottom), whereas it has saturated by 3 minutes for the 15 mm spacing (top). Tissue contraction is evidenced by the greater inward electrode displacement for longer lesion times.
Ex Vivo Photographic Analysis

The digital photographic setup (Canon EOS 20D, Canon EF 100 mm f/2.8 Macro Lens, JPEG 3504×2336 pixels², Adobe Photoshop) is configured to normalize color and brightness across experiments and to effect high image contrast in the range of colors induced by heating each type of ex vivo media. Remote temperature probe measurements are used to facilitate interpretation of post-lesion photographs. A color-zone scheme, illustrated in Figure 4, is produced by quantizing the RGB pixel values of each photograph into four classes based on a heuristic assessment of tissue quality. For each 3-minute lesion, the final reading from each remote temperature probe is matched to the color zone where its thermocouple appears in the post-lesion photograph. These matches determine the distribution of temperature values associated with each color zone, and thus, with photographic appearance. Lesions dimensions are measured based on the outer limits the moderated-cooked color zone (yellow), which was found to reliably indicate temperatures greater than 50°C.

Sources of error in the derived photograph-to-temperature correspondence may include variation in tissue and photographic characteristics, imprecision in thermocouple location relative to color zone, displacement of cannulae, and temperature probes during manipulation of the top tissue slab, spatial variation in time-integrated thermal exposure, and variation in heuristic assessment of color zone. In spite of these possible sources of error, the temperature distributions associated with each color zone are substantially unimodal, and their modal values increase in the order expected based on their appearance (Figure 4D). The regularity of these results is consistent with the interpretation that tissue appearance is indicative of the thermal exposure. It was not deemed necessary to match photographic appearance to the time-integrated thermal exposure, eg, Arrhenius cumulative thermal damage, since a thermal damage factor is not substantially more informative than the temperature at 3 minutes when the lesion has already reached a pseudo-steady-state.

In Vivo Temperature Measurement

The clinical work related to this publication was conducted in adherence with Good Clinical Practice standards, and was reviewed by the IRB committee at the University of Massachusetts’ Memorial Hospital (Worcester, MA, U.S.A.).

Data from bipolar lesions created in vivo are collected in the course of palisade treatment of SIJ pain, which employs a row of contiguous bipolar RF lesions to ablate the dorsal sacral innervations of the SIJ. For each of eight patients (age/sex: 48/F, 54/F, 54/M, 67/F, 79/F, 49/F, 46/M, 51/M) who presented with unilateral SIJ pain (positive physical exam with tenderness to SIJ palpation and positive resolution of pain for at least 1 week following SIJ block with 2 mL bupivacaine 0.25% and 2 mL triamcinolone 40 mg/ml), five to seven straight RF cannulae are placed in a line between the painful SIJ and the lateral aspects of the ipsilateral dorsal sacral foramina, starting superior to S1 and stopping inferior to S3. As shown in Figure 6, these cannulae are parallel, spaced by about 10 mm, and appear substantially perpendicular (ie, at a 90°, “right” angle) to the dorsal sacrum in a lateral fluoroscopic view. To achieve this, an AP fluoroscopic view is used to select a line for cannulae insertions that is lateral to the foramina and that is oriented substantially craniocaudally. Local anesthetic is injected into the skin along this line. The first cannula is lowered into the dorsal sacral periosteum under lateral fluoroscopic guidance, so that it appears perpendicular to the dorsal sacrum at the level of S2. Since the skin is not parallel to the sacrum, this cannula’s hub is tilted cranially. To avoid the ilium, the cannula’s hub may be tilted slightly medially. Additional cannulae are placed above and below the first cannula. A ruler is held perpendicular to the first cannula as shown in Figure 6D, and the second cannula is positioned parallel to and 10 mm away from the first, for the purpose of determining the second cannula’s point of skin insertion. All cannulae are lowered into the sacral periosteum under lateral fluoroscopic guidance to ensure that they are parallel to each other. A final AP image confirms their placement lateral of the dorsal sacral foramina. Placing cannulae in this manner tends to minimize tip offsets (see Figure 5D) and produce more complete inter-tip lesions. An alternative skin-perpendicular approach, used for some patients, is more likely to produce large tip offsets and, thus, a less complete lesion zone (see Figure 7).

Each cannula has a straight sharp tip, 10 cm shaft length, 10 mm tip length, and 20 gauge diameter (Cosman CC101020). Two 10 cm temperature-monitoring electrodes (Cosman disposable TCD-10 or autoclavable CSK-TC10) are connected to outputs 1 and 2 of a four-output radiofrequency generator (Cosman G4) configured for bipolar output. In regular practice, four electrodes can be connected to the generator and multiple bipolar pairs can be energized at once to substantially reduce the lesion time. Before RF is
applied to any pair, the sensory and motor stimulation response is assessed for each adjacent pair of cannulae to check for undesired proximity to the sacral nerve roots, and local anesthetic (0.5 mL lidocaine 1%) is injected into each cannula. In regular practice, sensory stimulation can be omitted because lesions are generated for each bipolar pair irrespective of sensory response, in order that a long, continuous palisade lesion is formed. By leapfrogging electrodes between adjacent pairs of cannulae, four to six bipolar RF lesions are generated sequentially, each using a 90°C set temperature and 3-minute set time. Afterward, each cannula is injected with a steroid (0.5 mL bupivacaine 0.25%) and a local anesthetic (0.1 mL triamcinolone 40 mg/ml).
For some bipolar lesions, a remote temperature probe is placed at the sacral surface midway between the two lesion cannulae to confirm that the inter-tip region achieves sustained neurolytic temperatures (Figure 8). Each remote temperature probe consists of a straight, 15-cm, 20-gauge cannula (Cosman CC15520) coupled with a disposable temperature-monitoring electrode (Cosman TCD-15) whose thermocouple lines are attached to output 3 of the G4 generator, with its RF line disconnected. Tip spacing, angle, and offset are estimated using external measurements and extrapolation from apparent cannulae diameters in lateral fluoroscopic images.

The ipsilateral L4 and L5 dorsal rami are each treated with a monopolar RF lesion using a 10-cm, 10-mm curved sharp tip, 20-gauge cannula (Cosman RFKC101020S), set temperature 80°C, and set time 1.5 minutes. Before lesioning, each cannula placement is confirmed to demonstrate a sensory response to 50 Hz stimulation at 0.2 Volts, and no motor response to 2 Hz stimulation at 0.6 Volts. The same pre- and post-lesion injections are used as in the palisade treatment.

RESULTS

Ex Vivo Lesion Dimensions

For six bipolar lesions generated in different samples of adult bovine liver using 10 mm tip spacing, 20 gauge cannulae, 10 mm tip lengths, 90°C set temperature, and 3-minute lesion time, the average midline length was 12.52 mm with a standard deviation of 0.87 mm, and the average width was 15.06 mm with a standard deviation of 0.50 mm. As observed in a previous study, ex vivo RF lesion sizes in animal tissue do not exhibit large variations for identical setups. They also change smoothly as geometric and RF parameters are varied.

Figures 5, 9, and 10 show cross-sectional photographs of bipolar lesions produced in ex vivo bovine liver for a variety of configurations, and plot measurements of the cross-sectional midline length \(L \) and width \(W \) of the lesions’ moderately-cooked regions (yellow color zone; see Figure 4). In particular, Figures 9 and 10 show the effect of variations in parallel tip spacing, tip diameter, and tip length for 90°C tip temperature and...
3-minute lesion time. While the lesion width increases with increased tip spacing, the midline lesion length declines. The decline in width occurs over a wider range of spacing values when tip length and diameter are increased. Figure 5 shows the effect of variations in inter-tip angle, inter-tip parallel offset, set temperature, and lesion time, starting from the base configuration. 10 mm parallel spacing, 20 gauge diameter, 10 mm tip length, 90°C tip temperature, 3-minute lesion time. In particular, the midline lesion length does not appear to decline precipitously for small inter-tip offsets and angles relative to the base configuration, which are likely to occur in actual clinical placements (Figure 5A, 5D, and 5E). For the base configuration, when the set temperature is 80°C or greater (Figure 5B), the entirety of the inter-tip region appears moderately or fully cooked (yellow or red color zone). For the base configuration, the lesion dimensions reach equilibrium between 2 and 3 minutes (Figure 5C). However, while 3 minutes is sufficient time for a lesion to reach its maximum extent in a variety of bipolar configurations relevant to pain management, for some other configurations, lesion times greater than 3 minutes can substantially increase inter-tip temperatures. In general, for smaller tip spacings, longer lesion times produce diminishing returns in terms of inter-tip tissue temperature (eg, compare the lesion at 3 and 5 minutes for the 15 mm spacing in Figure 5G). For larger tip spacings, longer lesion times can induce substantially higher temperatures in the inter-tip region, but the required lesion times may be considerably longer (eg, compare the lesion at 3 and 10 minutes for the 20 mm spacing in Figure 5G). For very large tip spacings where the electric field is not substantially focused in the inter-tip region, even a very long lesion time will not produce a connected lesion between tips.

The “Depth Cross Section” photograph in Figure 9 shows two examples of the photographed cross-sectional depth dimension of a bipolar lesion, and Table 1 reports measurements of this dimension for various configurations. The midline lesion depth D follows a similar pattern of decline with increased tip spacing as does the midline lesion length L.

These results show that for bipolar configurations, the fraction of the inter-tip volume exceeding neurolytic temperatures (≥45–50°C) increases with decreased tip spacing, decreased tip offset, decreased inter-tip angle, increased tip length, increased cannulae diameter, increased tip temperature, and/or increased lesion time.

Ex Vivo Lesion Temperature Time Series

Figure 5F plots thermocouple temperatures measured at intra-tip and inter-tip locations during 3-, 5-, and 10-minute lesions in ex vivo bovine liver for the base configuration (defined above). While the tip temperatures reach steady-state in about 15 seconds, remote temperatures along the midline saturate only between 2 and 3 minutes, just as is illustrated photographically in Figure 5C. While the time between 2 and 3 minutes does not induce a substantial temperature increase, continuing the lesion after 2 minutes ensures that tissue temperatures exceed 45–50°C for a duration capable of inducing cell death, and reduces sensitivity to inter-tip spacing. For example, Figure 11 shows both slower and smaller temperature rises at corresponding inter-tip locations when the tip spacing is increased over the range 10 mm to 15 mm.

In Figures 5F, 8, and 11, the set temperature used was 90°C, but only one of the electrode tips in each bipolar pair achieves this temperature. This temperature disparity is common to bipolar RF both ex vivo and clinically because each electrode in a bipolar configuration serves as the voltage reference and path for return currents for the other electrode. As such, the same relative voltage and current waveform is applied to both electrodes, so only the higher tip temperature is regulated. The extent of the temperature disparity is determined by the relative electrode sizes and differences in tissue characteristics near each electrode’s tip. As such, the likelihood of disparity generally increases for larger tip spacings.

Other Ex Vivo Media

Bipolar lesion geometry appears quite similar in ex vivo animal muscle and bovine liver, as shown in Figure 11. The visible lesion in muscle roughly matches the moderately-cooked region in bovine liver (yellow color zone, ≥54.5°C). Also plotted in Figure 11 are direct measurements of temperatures at corresponding locations in muscle and liver lesions. The similarity of these temperature time-series suggests that relevant electrothermal dynamics are similar in all these tissues, even though muscle starts changing color at a higher temperature than liver. Advantageously, ex vivo beef liver starts changing color between 45°C to 50°C, allowing photographic estimation of the entirety of the regions that reach neurolytic temperatures.

Lesions formed in egg white demonstrate substantial differences from those formed in solid animal tissue. Figure 12 compares ex vivo bipolar lesions in egg white
Figure 9. Cross-sectional photographs of bipolar lesions in ex vivo adult bovine liver show the lesion lengths \(L \) and widths \(W \) produced by different parallel tip spacings, tip diameters, and tip lengths, for 90°C tip temperature and 3-minute lesion time. The “Depth Cross Section” photograph shows two bipolar lesions in the lower liver slab, revealed by cutting the lower liver slab in a plane perpendicular to the tip lengths. Half of their midline depth dimension \(D \) can be measured in this manner (Table 1).
and bovine liver using 22 gauge cannulae, 5 mm tip lengths, 90°C set temperature, and 3-minute lesion time. The egg white results match those reported in a previous study.11 Whereas temperatures between bipolar electrode tips spaced by more than 6 mm do not appear substantially elevated in egg white, they are visibly raised in bovine liver. This apparent underestimation of lesion size in egg white may be due in part to the fact that egg white changes color only at 62–65°C.17 For example, in the egg-white lesion for 8 mm tip spacing shown in Figure 12, the remote probe’s temperature increased from 28.1°C to 47.7°C, but the visible lesion did not contact the probe. However, egg white’s high color-change temperature does not account for the fact that the proximal-edge midline temperatures in egg-white lesions were also 6°C to 14°C lower than those in the corresponding bovine liver lesions. Nor does it account for the fact that egg-white lesion shape is inconsistent across multiple experimental runs using the identical electrode setup, whereas lesions in bovine liver are consistently reproducible. These discrepancies may be explained by differences in the electrical, thermal, and mechanical properties of egg white fluid and solid animal tissue. In particular, spatial variations in egg white’s constituents contribute to irregularities in heating patterns and color changes. For example, albumin protein density is variable and distributed irregularly within egg white. Because thermal denaturation of that protein causes first color changes, the visible lesion can be correspondingly variable and unpredictable. Furthermore, the other more fluid components of egg white have different thermal color-change characteristics and produce significant heat convection due to the absence of a cellular matrix. Convective flow during RF lesioning in egg white is visible microscopically, and is apparent

Figure 10. Measurements of midline lesion length L and width W in ex vivo adult bovine liver produced by a variety of parallel tip spacings, tip diameters, and tip lengths, for 90°C tip temperature and 3-minute lesion time, as photographed in Figures 7 and 10. (Left) The midline lesion length L increases with increased cannulae diameter and tip length. Line graphs connect the average midline lesion length over multiple runs of each tip spacing-diameter-length combination for the purpose of organizing the figure by tip diameter-length combinations; however, these lines do not necessarily indicate a linear trend in midline lesion length between larger spacings (eg, 15 and 20 mm) where the lesion splits into two parts around each tip. (Right) Lesion width is not strongly dependent on tip diameter or tip length.

Table 1. Ex Vivo Lesion Depth

<table>
<thead>
<tr>
<th>Parallel Tip Spacing (mm)</th>
<th>Tip Diameter (ga)</th>
<th>Tip Length (mm)</th>
<th>Tip Temp. (°C)</th>
<th>Lesion Time (min : sec)</th>
<th>Midline Lesion Depth (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>20</td>
<td>10</td>
<td>90</td>
<td>3:00</td>
<td>8.1</td>
</tr>
<tr>
<td>10</td>
<td>18</td>
<td>10</td>
<td>90</td>
<td>3:00</td>
<td>8.8</td>
</tr>
<tr>
<td>10</td>
<td>18</td>
<td>5</td>
<td>90</td>
<td>3:00</td>
<td>5.3</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>10</td>
<td>90</td>
<td>3:00</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>15</td>
<td>90</td>
<td>10:00</td>
<td>5.6</td>
</tr>
</tbody>
</table>

The midline depth D of various parallel-tip bipolar lesions is based on bisection of the lower bovine liver slab as illustrated in the “Depth Cross Section” photograph of Figure 7.
Figure 11. Cross-sectional photographs of bipolar lesions in ex vivo bovine liver, bovine muscle, porcine muscle, and chicken muscle. At each spacing, the electrode configuration is identical. Intra-tip and inter-tip temperatures for all tissues are plotted over the same time axis for each spacing. The midline temperatures decline with increased spacing. Configuration: variable spacing, 20 gauge diameter, 10 mm tip length, 90°C tip temperature, 3-minute lesion time.

Figure 12. (Upper) Photographs of ex vivo bipolar lesions in egg white and adult bovine liver. At each spacing, the electrode configuration is identical. (Lower left) Repeated lesions in egg white using 6 mm tip spacing, with initial egg white temperatures T_0 ranging from 27–35°C. (Lower right) The final temperature at the proximal edge of the inter-tip midline for each of the lesions photographed. Line graphs connect the average temperatures for repeated runs of each spacing-media combination, omitting the disconnected egg white lesions at 6 mm spacing. The large variability in these temperatures across repeated runs at 6 mm spacing corresponds to the large variability in lesion shape shown at the lower left. Configuration: variable spacing, 22 gauge diameter, 5 mm tip length, 90°C tip temperature, 3-minute lesion time.
Table 2. In Vivo Temperature Measurements

<table>
<thead>
<tr>
<th>Patient</th>
<th>Tip Spacing (mm)</th>
<th>Tip Offset (mm)</th>
<th>Time to 45°C (min : sec)</th>
<th>Time to 50°C (min : sec)</th>
<th>Steady State Temp. (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>7</td>
<td>0:07</td>
<td>0:08</td>
<td>82</td>
</tr>
<tr>
<td>B</td>
<td>7</td>
<td>2</td>
<td>0:10</td>
<td>0:13</td>
<td>80</td>
</tr>
<tr>
<td>C</td>
<td>10</td>
<td>0</td>
<td>0:20</td>
<td>0:30</td>
<td>64</td>
</tr>
<tr>
<td>D</td>
<td>10</td>
<td>1</td>
<td>0:20</td>
<td>0:30</td>
<td>60</td>
</tr>
<tr>
<td>E</td>
<td>10</td>
<td>4</td>
<td>0:11</td>
<td>0:17</td>
<td>62</td>
</tr>
<tr>
<td>F</td>
<td>11</td>
<td>0</td>
<td>0:32</td>
<td>0:55</td>
<td>53</td>
</tr>
<tr>
<td>G</td>
<td>12</td>
<td>2</td>
<td>0:24</td>
<td>0:35</td>
<td>62</td>
</tr>
<tr>
<td>H</td>
<td>9</td>
<td>14</td>
<td>1:19</td>
<td>N/A</td>
<td>49</td>
</tr>
</tbody>
</table>

In vivo temperature measurements were made near the sacral surface, halfway between bipolar electrodes, during clinical palisade treatment of SIJ pain (see Figure 11). Reported measurements were collected during the first lesion produced at both electrodes in each bipolar pair. Configuration: variable spacing, 20 gauge diameter, 10 mm tip lengths, 90°C set temperature, 3-minute lesion time.

In Vivo Lesion Temperature Time Series

During clinical palisade denervation of the SIJ in four patients, remote temperature probes were placed on the sacral surface near the distal-edge midlines of some electrode pairs. Measurements from these probes were used to ascertain whether sustained neurolytic temperatures (≥ 45–50°C for more than 20 seconds14–16) were achieved in the inter-tip region between electrode pairs, including the sacral surface. Figure 8 shows the setup for one patient. Table 2 documents that neurolytic temperatures above the 45°C to 50°C range are achieved at this position for parallel tip spacings up to 12 mm with 2 mm offset. These data are also consistent with an expected decrease in temperature at this position as tip spacing and offset increase.

Clinical outcomes are positive, but have so far only been assessed informally over a short time.

DISCUSSION

Bipolar Configuration Parameters

Previous conceptions about bipolar electrode spacing should be revised in light of the present study. First, the upper physical limit on bipolar electrode spacing is not 6 mm as reported by Pino et al.11 That result was derived using an ex vivo egg white model which has substantially different physical properties from solid tissue, as detailed above. In the present study, in vivo temperature measurements demonstrated the generation of a “strip lesion” connecting bipolar electrode tips spaced by as much as 12 mm. Ex vivo animal tissue experiments demonstrated the same effect for spacings as large as 20 mm. In both cases, these spacing values were the upper limits observed in this study, not the upper physical limit on bipolar electrode spacing. Larger tip spacings may be possible, but should be verified in vivo by inter-tip temperature monitoring before being put into regular clinical use.

Second, the tip spacing at which a bipolar thermal lesion transitions from a single volume into two volumes is not the same for all bipolar configurations. In the present study, ex vivo animal tissue experiments demonstrated that heating between bipolar tips is enhanced as tip diameter, tip length, tip temperature, and/or lesion time are increased (Figures 5, 9, and 10). That said, both ex vivo and in vivo data indicate that a parallel spacing of 10 mm is a conservative choice for the purpose of generating a rounded rectangular lesion (Figure 1B) using 10-mm or 15-mm tip lengths, 20- or 18-gauge cannulae, and 90°C set temperature, within a practical, 3-minute lesion time. For this configuration, lesion geometry appears to be fairly insensitive to small parameter variations, including spacing inaccuracies, inter-tip angles, and inter-tip offsets.

Table 3 outlines discussion of a number of geometric and RF parameters relevant to bipolar thermal lesion geometry.

Bipolar Lesion Size

Bipolar RF delivered between conventional RF cannulae can produce neurolytic temperatures over tissue volumes that are large by pain management standards. For example, as shown in Figure 10 and Table 1, a rounded rectangular lesion with length \(L = 12 \text{ mm} \), width \(W = 15 \text{ mm} \), and depth \(D = 8 \text{ mm} \) can be created using a bipolar configuration with parallel tip spacing.
many electrode placements (2 arranged to form a bipolar RF palisade, roughly twice as in pain management. For example, it has been reported were used instead. Create the same aggregate lesion zone if monopolar RF

Using tip spacing, for 1.5–3 minutes, produces a roughly prolate-ellipsoidal lesion with semi-axes

Lesion time Increasing lesion time improves the likelihood that the entirety of the inter-tip region will achieve sustained neurolytic
temperature (ie, exceeding 45°C to 50°C for more than 20 seconds). Lesion times between 2 and 3 minutes can be used for 10 mm tip spacing and a 90°C set temperature, but at the lower end of that time range, the lesion size is more sensitive to misalignments between electrodes. See Figures 6, 7, and 8.

s = 10 mm, tip length l = 10 mm, cannulae diameter d = 20 or 18 gauge, set temperature T = 90°C, and lesion time t = 3 minutes. Using tip length l = 15 mm increases the rectangular lesion length to L = 18 mm. Using tip spacing s = 12 mm increases the rectangular lesion width to W = 17 mm.

In contrast, a monopolar RF electrode of 10 mm tip length, 20 or 18 gauge diameter, heated to 80°C to 90°C for 1.5–3 minutes, produces a roughly prolate-ellipsoidal lesion with semi-axes L = 12–14 mm and W = D = 5–8 mm in ex vivo adult beef liver (not pictured in this publication). Three such monopolar lesions are required to approximate the volume of a bipolar lesion created using only two electrodes of the same size, spaced by 10 mm (see Figure 13C). Extrapolating this to the situation where N ≥ 2 electrode placements are arranged to form a bipolar RF palisade, roughly twice as many electrode placements (2N-1) would be required to create the same aggregate lesion zone if monopolar RF were used instead.

The size of conventional bipolar RF lesions can also exceed that of monopolar cooled RF lesions as applied in pain management. For example, it has been reported that a cooled RF electrode of 18 gauge diameter and 4 mm tip length (inserted through 17 gauge introducer cannulae) creates spherical lesions with diameter L = W = D = 8–10 mm when heated to 60°C over 3 minutes (0.5 minute pre-cooling plus 2.5 minutes heating). While much larger lesions of 30 to 50 mm diameter can be created using the cooled RF electrodes invented for tumor ablation in large organs by Prof Eric Cosman, Sr. in the 1990s (Radiomics Cool-Tip RF System, Burlington, MA, U.S.A.), lesions of that size have not been suggested for use in the spinal pain management. The proximity of target nerves to non-target nerves, blood vessels, and the skin surface imposes an upper bound on the safe size of any heat lesion in the spine, whether produced by cooled or conventional RF. Uncertainty in cooled RF temperature control may additionally limit the use of larger cooled RF lesions near sensitive spinal structures. Since the maximum tissue temperature of a cooled RF lesion occurs at a variable distance from the electrode's tip, a remote temperature sensor placed at a fixed distance from the tip may not measure that maximum. For example, in vivo and ex vivo experiments have shown that tissue can reach 75°C within a cooled RF lesion when the electrode's remote tip sensor reads 60°C.
In contrast, the maximum temperature during conventional monopolar and bipolar RF lesioning can be directly measured and controlled since it has a known position, either within the electrode tip(s), or within the inter-tip region for unusually small bipolar spacings. As a technique for creating larger lesions in nerve tissue, cooled RF also has a number of practical disadvantages relative to conventional bipolar RF. The diameters of current cooled electrodes are relatively large to accommodate an internal water cooling system, and thus, cooled electrodes can cause greater insertion trauma. For example, a 17-gauge cooled RF introducer has a frontal cross-sectional area which is \((1.47 \text{ mm} / 1.27 \text{ mm})^2 = 134\%\) that of an 18-gauge conventional cannula, and \((1.47 \text{ mm} / 0.9144 \text{ mm})^2 = 258\%\) that of 20-gauge conventional RF cannula. Cooled electrodes are currently for single use only, and each one costs about 10 times more than two conventional electrodes and cannulae per procedure.

Currently available reports on the size of cooled bipolar RF lesions are not comparable to the present study because they relate only to lesioning within the confined space between spinal vertebrae.\(^{21-27}\) Nevertheless, it can be said that the safe use of cooled bipolar RF in the spine is limited by the same size constraints that govern all RF methods, and by the same temperature-control uncertainties as monopolar cooled RF.

The great variety in available sizes of inexpensive RF cannulae, and the inherent adjustability of bipolar electrode/cannulae spacing, permit diverse sizing and shaping of conventional bipolar lesions, both to ablate target anatomy and to avoid nontarget anatomy. Figures 5 and 9 show many examples of this conformal flexibility, by which lesion width can be adjusted nearly independently of lesion length and depth. In contrast, monopolar RF applied to a cylindrical electrode is restricted to producing axially-symmetric lesions, where lesion width equals lesion depth.

Palisade Sacroiliac Joint Treatment

Dorsal innervation of the SIJ has been reported to include the L4 and L5 dorsal rami, and the S1, S2, S3, and sometimes S4 lateral branches.\(^ {12}\) Recent literature reviews contain numerous approaches to the treatment of chronic back pain by radiofrequency ablation of dorsal SIJ innervation.\(^ {2,23,24}\) Typically, lesioning of the L4 and L5 dorsal rami is accomplished using conventional monopolar RF since these nerves have regular locations relative to bony landmarks. Approaches differ in their methods for lesioning the sacral lateral branches, which do not have a stereotyped location relative to bony landmarks. These nerves have been reported to follow branching, irregular pathways between the lateral aspect of the dorsal sacral foramina and the dorsal SIJ.
line, ranging from points slightly superior to S1 to those slightly inferior to S3. Conventional monopolar RF and pulsed RF methods use electrical stimulation to guide electrode placement near individual lateral branches of the dorsal sacral rami. These techniques have the advantage of targeting nerves specifically, but may miss some nerve branches without exhaustive search and concomitant tissue trauma. Conventional bipolar RF has been used to target either the SI joint itself, or the sacral lateral branches as they emerge from the S1–S3 foramina. These bipolar RF methods take advantage of the absence of motor function in the sacral lateral branch nerves by using larger lesions to ablate the likely locations of multiple nerves at once, thereby avoiding the complication of sensory-stimulation-based search. Similarly, monopolar RF using internally-cooled RF electrodes has been employed to lesion the lateral branch nerves as they emerge from the S1–S3 foramina.18–20

Reported outcomes for SIJ treatment by conventional and cooled RF have not yet proven a superior method. Cohen et al. suggest that the higher success rate of their cooled RF method relative to some conventional RF methods is due to the creation of larger lesions, but warn that this comparison is not statistically powered, and that the apparent improvement may be due to their use of stricter patient-inclusion criteria than those used in other studies. Based on the results of the present study and careful analysis of the geometric and RF parameters reported in the literature (Table 4), it is conceivable that larger lesions were being created in the cooled RF studies than were in the previous bipolar RF studies. However, the present study also suggests that previous bipolar RF techniques can be improved to create larger lesions, with smaller inter-lesion gaps, and with fewer cannula placements than the cooled RF method (Figure 13).

The bipolar palisade method of SIJ denervation proposes a number of adjustments to previously reported bipolar RF and cooled RF methods. First, electrode positions and RF parameters are selected to create bigger lesions, using conventional electrodes and cannulae (Table 4). Second, cannulae are placed on a straight line lateral to the sacral foramina, starting superior to S1 and ending inferior to S3 or S4 (Figures 2 and 6). Relative to periforaminal placements, this approach is configured to reduce difficulty in identifying the dorsal sacral apertures, to reduce the risk of damage to the sacral roots, and to reduce the number of cannulae placements required (palisade uses 5 to 7 placements;

<table>
<thead>
<tr>
<th>Table 4. SIJ Treatment Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Ferrante et al.3</td>
</tr>
<tr>
<td>Pino et al.11</td>
</tr>
<tr>
<td>Burnham et al.4</td>
</tr>
<tr>
<td>Wright et al.18</td>
</tr>
<tr>
<td>Kapural et al.19</td>
</tr>
<tr>
<td>Cohen et al.20</td>
</tr>
<tr>
<td>Palisade</td>
</tr>
</tbody>
</table>

Configurations for SI treatment using conventional bipolar and monopolar cooled RF. Cylindrical electrodes/cannulae of 22, 20, 18, and 17 gauge (ga) have 0.71, 0.91, 1.27, and 1.47 mm diameters, respectively.
periforaminal bipolar RF using 12 placements;\(^4\) and periforaminal cooled RF uses 8 to 9 placements.\(^{18-20}\).

Third, cannula hubs are tilted cranially and placed substantially perpendicular to the dorsal sacrum, so that adjacent tips are parallel and aligned with minimal offset, angle, and skew. Fourth, a bipolar lesion is created between each adjacent pair of cannulae, and multiple bipolar lesions can be created at once using a suitable four-electrode RF generator. The objective is the generation of a single, continuous lesion zone spanning the entire region through which lateral branches travel from the sacral foramina to the ipsilateral SIJ (Figure 2). Each bipolar lesion is expected to ablate nerves in a strip ranging from the dorsal sacral surface to about 10 mm above it, and continuity is guaranteed between adjacent lesions that share a common central electrode (Figure 13B). In contrast, previous approaches only target the expected locations of lateral branch nerves, and may thus miss nerves at irregular locations and depths.\(^{19}\) The efficacy of the palisade method must ultimately be determined by formal study of clinical outcomes. However, clinical work so far has shown that the method is uncomplicated, can be performed in less than an hour, and produces positive short-term results.

A principal difficulty in using monopolar cooled RF for either palisade or periforaminal electrode arrangements is the selection of tip-to-tip and tip-to-sacrum distances that will reliably avoid gaps in the final aggregate lesion zone. This difficulty is intrinsic to the spherical shape of the individual lesions, as illustrated in Figure 13A. For a cooled monopolar electrode configured to produce a spherical lesion with 8–10 mm diameter, the electrode’s sequential positions must be spaced by no more than 8–10 mm to avoid gaps between adjacent lesions. Furthermore, as the spacing is increased toward that upper limit, the distance between the electrode and the sacral surface must be targeted with increased accuracy to avoid gaps between the sacral surface and points of lesion overlap. Satisfying these constraints increases the number of required lesions, reduces ablation of nerves traveling at different distances from the sacral surface, and/or damages a larger volume of healthy bone. Even then, gaps can still arise between adjacent lesions if the actual tip-to-tip or tip-to-sacrum distances differ by small amounts from those intended. In contrast, conventional bipolar lesion geometry is less sensitive to tip-to-tip targeting inaccuracies, and there is no uncertainty about tip-to-sacrum distances because conventional RF cannulae are placed in direct contact with the sacral surface (see Figure 13B).

Since at least one report on the cooled RF method estimates a spacing of 10 mm between adjacent electrode positions, and a distance of 2 mm between the electrode’s tip and the sacral surface, it is conceivable that nerve-sparing, inter-lesion gaps contributed to some patients’ nonresponse to that treatment.\(^{19}\) This issue may not be resolved simply by increasing the diameter of spherical cooled RF lesions. Doing so would also increase the lesion dimension lateral to the line connecting individual lesions, and thereby increase the risk of injury to the sacral nerve roots.\(^{18,19}\) Indeed, based on in vivo temperature measurements at the posterior sacral foraminal aperture (PSFA) during cooled RF lesioning using parameters expected to produce a lesion with 8–10 mm diameter, Wright et al. urge caution in placing a cooled RF probe “less than 7 mm from the PSFA to avoid heating the spinal nerve to neurodestructive temperature.”\(^{18}\)

Published studies of cooled bipolar RF lesion geometry are currently too limited to motivate its application in SIJ treatment, both because the lateral/depth dimension of these lesions has not yet been mapped to assess risk to sacral nerve roots, and because the reported lesion times are very long (13–20 minutes) for large, nonparallel tip spacings (20.9–38.6 mm).\(^{25-27}\) Similarly long lesion times enable conventional bipolar RF to produce a strip lesion for large parallel tip spacings without substantially increasing either the midline or the overall lateral/depth dimension of the lesion (eg, 20 mm tip spacing, 10-minute lesion time; see Figure 5G and Table 1). The cooled RF method, in both bipolar and monopolar forms, also has a number of practical disadvantages, including the use of a 17-gauge cannulae that increases placement trauma, the need to manage a cool-water pumping system, the complication of switching between conventional and cooled RF equipment to treat L4-L5 and S1-S3,\(^{20}\) and a drastically higher per-procedure equipment cost.

The technical observations in this paper are provided to assist clinicians in refining RF methods for SIJ treatment, whether for palisade or periforaminal electrode arrangements. The bipolar palisade technique presented in Figures 2 and 6 is engineered in accordance with the working theory that a larger lesion zone over the dorsal sacrum can improve the degree and duration of SIJ-related pain reduction,\(^{20}\) and with the objective of minimizing acute trauma, reducing procedural complications, and moderating treatment costs. Nevertheless, several variants of the presented method are worthy of mention. For example, it may be advantageous to use...
18-gauge cannulae rather than 20-gauge cannulae. Since
18-gauge cannulae allow somewhat larger inter-tip
 spacings (see Figures 9 and 10), the same aggregate pali-
sade width could be produced either with fewer total
cannula insertions or with shorter 5-mm tip lengths, to
moderate unnecessary damage to healthy tissue. Simi-
larly, since 18-gauge bipolar lesions extend somewhat
farther distally to the inter-tip region, they may better
heat inter-tip depressions in the sacral surface, which
could plausibly harbor nerves in both bipolar RF and
cooled RF approaches. On the other hand, an 18-gauge
cannula produces greater insertion trauma, since its
frontal cross-sectional area is \((1.27 \text{ mm/} 0.9144 \text{ mm})^2 = 193\% \) that of a 20-gauge cannula. In
another procedural variant shown in Figure 7, elec-
trodes are inserted perpendicular to the skin and at an
acute angle to the sacrum, rather than perpendicular to
the sacrum, as shown in Figure 6. This variant has also
produced positive short-term clinical results, and it
could be argued that it uses fewer cannulae to cover the
same distance along sacral surface. However, acute
angles between cannulae and the sacrum produce larger
tip offsets that may lead to an incomplete lesion zone.
Another variant, not explored in this study, involves
placing each cannula exactly perpendicular to the
sacrum by allowing a small angle between adjacent can-
nulae. This could have the advantage of reducing tip
offsets for sacra with high curvature, but may compli-
cate the targeting of inter-tip spacings.

Other Applications

The size and shape of bipolar RF lesions may be advan-
tageous in other pain management applications where
larger lesions are desired, or where it is desired to place
lesions side-by-side without gaps. Since the width and
length of bipolar lesions can be independently adjusted
by varying the inter-electrode spacing and tip length,
they may be useful to target nerves that have atypical
location relative to bony landmarks, and which may
also be proximate to sensitive structures. For example,
bipolar lesions could be employed to reduce the number
of cannula positions required by methods of medial
branch neurotomy that utilize multiple, closely-spaced
monopolar lesions to create a larger aggregate lesion
zone.\(^{34,35}\) In particular, one might efficiently lesion a
medial branch nerve at a mid-thoracic level (T5–T8) by
placing bipolar electrodes on opposite sides of the inter-
transverse region within which the nerve’s location
exhibits high inter-patient variability.\(^{36}\) Conventional
bipolar RF could also be reconsidered for intradiscal RF
heating, since the present study suggests that a longer
lesion time can produce substantial inter-tip heating at
larger tip spacings that previously thought.

Model Validity

Ex vivo tissue has long been used to assess RF lesion
geometry\(^{6,10,11,13,20,23–27,35}\) and is an important tool
for multifactor assessment of RF lesion geometry to guide
development of clinical protocols. The results of such
ex vivo studies, whether using human or animal tissue,
must always be delivered with the caveat that they are
biased by postmortem changes in cellular physiology,
intersitial fluid, and blood flow. Other differences
from the clinical context include pre-lesion tissue tem-
perature and tissue inhomogeneities, such as the pres-
ence of bone and large blood vessels. Since the effect
of these differences has not yet been adequately quan-
tified, lesion size in the present study was assessed con-
servatively using room-temperature tissue samples and
measurements based on the moderately-cooked color
zone (yellow), corresponding to temperatures higher
than 45°C to 50°C, which is assumed to induce neu-
rolysis clinically. Direct temperature measurements in
the ex vivo lesion were used to calibrate tissue color
changes that might otherwise be misleading about
lesion size. Demonstration of consistent lesion size and
direct temperature measurements across multiple
animal tissue types were used to check the results’ gen-
erality. Given uncertainties about any ex vivo model,
the present study was focused on characterizing geo-
metrical changes across a wide range of tissue param-
eters to frame the results of in vivo temperature
mapping, rather than quantifying ex vivo lesion size
statistically. Most importantly, in vivo temperatures
measured during a clinical SIJ treatment were consist-
ent with those measured ex vivo at corresponding
locations in the inter-tip region.

REFERENCES

1. Cohen SP. Sacroiliac joint pain: a comprehensive
2. Yin W, Willard F, Carreiro J, Dreyfuss P. Sensory
 stimulation-guided sacroiliac joint radiofrequency neurotomy:
 technique based on neuroanatomy of the dorsal sacral plexus.
3. Ferrante FM, King LF, Roche EA, et al. Radiofre-
 quency sacroiliac joint denervation for sacroiliac syndrome.

AUTHOR QUERY FORM

Dear Author,
During the preparation of your manuscript, the questions listed below have arisen. Please answer all the queries (marking any other corrections on the proof enclosed) and return this form with your proofs.

<table>
<thead>
<tr>
<th>Query References</th>
<th>Query</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AUTHOR: Please confirm that lesioning found in “lesioning the dorsal SIJ” is correct.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>AUTHOR: Please provide product details (city/state, country) for Cosman LCE.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>AUTHOR: Figures 5–13 have been renumbered as journal style requires chronological citation. Figure legends and artworks have been renumbered accordingly. Please confirm that the changes have been incorporated correctly.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>AUTHOR: Please provide product details (manufacturer’s name, city/state, country) for Canon EOS 20D, Canon EF 100 mm f/2.8 Macro Lens, JPEG 3504×2336 pixels², Adobe Photoshop.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>AUTHOR: Should “0.5 minute” be changed to “0.5 seconds”? If not, please disregard this query.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>AUTHOR: Please confirm the title of proceedings has been correctly expanded for Ref. 12.</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>AUTHOR: Please provide the city (and state if USA) of publication and page range for this chapter in Ref. 17.</td>
<td></td>
</tr>
</tbody>
</table>